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Overview

Agenda:
Subset selection methods.
Ridge regression.
Lasso regression.

Readings:
ISLR Chapter 6, sections 6.1 and 6.2
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Linear Model: Pros and Cons

In this chapter, we are going to extend our understanding of the Linear Model

Y = β0 + β1X1 + β2X2 + ....+ βpXp

Despite its simplicity, linear regression model estimated by OLS has two key advantages: inter-
pretability and good predictive performance.
However, the linear nature of regression function means that complex non-linear relationships cannot
be easily modeled.
One solution is to add more features to the model — interactions, powers, log-transformations and
so on. This allows the model to retain its linear nature, yet approach non-linear models in terms of
flexibility and predictive performance.
The question then becomes — how does one select which features (regressors) to include? And why
do we want to select a subset of the features?
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Why Consider Alternatives to OLS?

Model Interpretability
Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By
removing these variables we can obtain a model that is more easily interpreted.

Prediction Accuracy
Suppose n is the number of observations and p is the number of regressors
OLS estimates generally have low bias
When n ≫ p, OLS estimates tend to also have low variance, and hence will perform well on test
observations
When n is not much greater than p then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future observations
Finally, OLS is generally infeasible when p > n.
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Feature Selection Methods

Subset selection. Identify a subset of the p predictors that are believed to be related to the response
Y . Then fit a model using least squares on the reduced set of variables.

Examples: best subset selection, forward stepwise selection, backward stepwise selection.

Shrinkage/regularization. Fit a model involving all p predictors, but the estimated coefficients are
shrunken towards zero relative to the least squares estimates. This shrinkage/regularization has the
effect of reducing variance and can also perform variable selection.

Examples: ridge regression, lasso regression, elastic net regression.

Dimension reduction. Project the p predictors into a M-dimensional subspace, where M < p. This is
achieved by computing M different linear combinations, or projections, of the variables. Then these
M projections are used as predictors to fit a linear regression model by least squares.

Examples: principal component regression, partial least squares.
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Best Subset Selection

Let M0 denote the null model, which contains no predictors. This model simply predicts the sample
mean for each observation.
For k = 1, 2, . . . , p:

Fit all
(
p
k

)
= p!

k!(p−k)!
models that contain all possible combinations of k predictors out of p.

For each value of k, pick the best out of these models as having the smallest value of the loss function
(lowest RSS or highest R2) on the training dataset and call that model Mk .

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp

(AIC), BIC or adjusted R2 (more on these later).
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Best Subset Selection
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Stepwise Selection

The total number of models to estimate in best subset selection algorithm is equal to 2p and that
number grows very quickly with p. There are 1024 models for p = 10, over a million for p = 20 and
with p = 40 it becomes computationally infeasible even on fastest modern hardware.
Because of mainly this reason, stepwise methods, which explore a far more restricted set of models,
are attractive alternatives to best subset selection.
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Forward Stepwise Selection

Forward stepwise selection begins with a model containing no predictors, and then adds predictors
to the model one-at-a-time, until all p predictors are in the model.
At each step the variable that gives the greatest additional improvement to the fit is added to the
model.
Let M0 denote the null model, which contains no predictors.
For k = 1, 2, . . . , p − 1:

Consider all p − k models that augment the predictors in Mk with one additional predictor.
Pick the best out of these models as having the smallest value of the loss function (lowest RSS or
highest R2) on the training dataset and call that model Mk+1.

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp

(AIC), BIC or adjusted R2.
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Backward Stepwise Selection

Backward stepwise selection begins with a full model containing all p predictors, and then iteratively
removes the least useful predictor one-at-a-time.
Let Mp denote the full model, which contains all p predictors.
For k = p, p − 1, . . . , 1:

Consider all k models that contain all but one of the predictors in Mk for a total of k − 1 predictors.
Pick the best out of these k models (lowest RSS or highest R2) on the training dataset and call that
model Mk−1.

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp

(AIC), BIC or adjusted R2.
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Backward vs Forward Selection

Both backward and forward stepwise selection search only through a small subset of 2p and thus can
be applied in settings where p is too large for best subset selection.
However, neither of them is guaranteed to yield the best model containing a subset of p predictors.

Backward selection requires that the sample size n is larger than the number of variables p (so that
the full model with p predictors can be fit). In contrast, forward stepwise can be used even when
n < p, and so is the only viable subset method when p is very large.
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Choosing the Optimal Model

The model containing all p predictors will always have the smallest RSS and the largest R2, since
these quantities are related to the training error, which is typically negatively related to number of
features used.
We wish to choose a model with low test error, not a model with low training error. Therefore, RSS
and R2 are not suitable for selecting the best model among a collection of models with different
numbers of predictors.
We can directly estimate the test error, using either a validation set approach or a cross-validation
approach, as discussed in previous lectures.
Alternatively, we can indirectly estimate test error by making an adjustment to the training error to
account for the bias due to overfitting.
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Cp, AIC, BIC, and Adjusted R2

Cp, AIC, BIC, and Adjusted R2 are different measures designed to introduce a correction to training
error to help avoid overfitting issues.
Mallow’s Cp:

Cp =
1
n
(RSS + 2d σ̂2)

where d is the total number of parameters used and σ̂2 is an estimate of the variance of the error
term ϵ.
The AIC criterion is defined for a large class of models fit by maximum likelihood:

AIC = −2 log L+ 2d

where L is the maximized value of the likelihood function for the estimated model.
In case of linear model with normal errors Cp and AIC are equivalent.
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Cp, AIC, BIC, and Adjusted R2

BIC
BIC =

1
n
(RSS + log(n)d σ̂2)

Like with Cp and AIC, the lower value of BIC, the better.
BIC replaces the term 2d σ̂2 used by Cp with a term log(n)d σ̂2. Since log(n) > 2 for any n > 7, BIC
places heavier penalty on models with many variables, and hence usually results in the selection of
smaller models than Cp.
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Cp, AIC, BIC, and Adjusted R2

For a least squares model with d variables the adjusted R2 statistic is

R2
adj = 1 − RSS/(n − d − 1)

TSS/(n − 1)

Unlike Cp, AIC and BIC, a larger value of R2
adj indicates a model with a smaller test error.

Maximizing R2
adj is equivalent to minimizing RSS

(n−d−1) . While RSS always decreases as the number
of variables in the model increases, R2

adj may increase or decrease due to the presence of d in the
denominator.
In other words, unlike the standard R2, the adjusted R2 statistic pays a price for the inclusion of
unnecessary variables in the model.
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Credit Data Set Example
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Shrinkage Methods

The subset selection methods fit a linear model that contains only a subset of the predictors. This is
equivalent to setting the coefficients on excluded predictors to zero prior to running the estimation
algorithm.
As an alternative, one can fit a model containing all p predictors using a technique that regularizes
the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero as part
of the estimation algorithm.
It may not be immediately obvious why such a constraint should improve the fit or if the algorithm
will work in the first place, but it turns out that shrinking the coefficient estimates can significantly
reduce their variance at a cost of a minor increase in bias.
Two most common shrinkage/regularization methods are ridge regression and lasso regression.
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Ridge Regression

Standard least squares regression fits the model by picking values of β0, β1, . . . , βp that minimize

RSS =
n∑

i=1

yi − β0 −
p∑

j=1

βjxij

2

Ridge regression instead picks coefficient values β̂R that minimize

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j

Parameter λ is the tuning parameter , to be determined separately.
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Ridge Regression

The nature of ridge regression is similar to that of OLS: seek coefficient values that make the model
fit the data well (by making RSS small).
However, now we can no longer set values of coefficients to arbitrary values, even if that significantly
decreases RSS. This is because the second term λ

∑p
j=1 β

2
j , called a shrinkage penalty , will increase

our loss function if values of β0, β1, . . . , βp are far away from zero.
Because loss function now has two terms to balance out, the extra second term has the effect of
shrinking the estimates of βj towards zero.
The tuning parameter λ serves to control the relative impact of these two terms on the regression
coefficient estimates. Selecting a good value for λ is critical, and is done via cross-validation.
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Credit Card Data Example

As can be seen from the picture, it is always
possible to set λ to a value that will shrink all
coefficients arbitrary close to zero.
As such, we need to perform cross-validation
testing to see which value of λ achieves minimal
total value of ridge loss function.
The process is usually done via a grid search
algorithm (more on that later)
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Feature Scaling and Standardization

Standard least squares coefficient estimates are scale invariant: multiplying Xj by a constant c simply
leads to a scaling of the least squares coefficient estimate β̂j by a factor of 1/c . In other words,
regardless of how the j-th predictor is scaled, β̂jXj will always remain the same.
In contrast, the ridge regression coefficient estimates can change substantially when multiplying a
given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the
ridge regression loss function.
Unlike the first term, which contains β̂jXj parts, the shrinkage penalty contains values of only β̂2

j ,
thus making is scale-dependent.
Therefore, it is best to apply ridge regression after standardizing the predictors:

x̃ij =
xij√

1
n

∑n
i=1 (xij − x j)

2
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Why Does Ridge Regression Improve Over LS: Bias-variance trade-off

Suppose our test data Te consists of a single data point (x0, y0). Then

MSE = E
[(

y0 − f̂ (x0)
)2

]
= E

[(
f (x0)− f̂ (x0)

)2
]
+ Var(ϵ0)

= E
[(

f̂ (x0)− E
[
f̂ (x0)

])2
]

︸ ︷︷ ︸
Var(f̂ (x0))

+ E
[(

f (x0)− E
[
f̂ (x0)

])2
]

︸ ︷︷ ︸
E[Bias2(f̂ (x0))]

+ Var(ϵ0)

Variance refers to the amount by which f̂ would change if we estimated it using a different training
data set
Bias refers to the error that is introduced by approximating a real-life problem by a much simpler
model
Typically as the flexibility of f̂ increases, its variance increases, and its bias decreases. So choosing
the flexibility based on MSE amounts to a bias-variance trade-off.
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Why Does Ridge Regression Improve Over LS?

Squared bias, variance and MSE.
Because OLS is free to choose any coefficient
values, it tends to pick the ones that provide
best fit, meaning less bias and more variance.
Ridge regression, on the other hand, is penal-
ized for choosing coefficients with high second
moments, thus leading to less variance, slightly
more bias, but lower MSE overall.
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Lasso regression

Unlike subset selection, which generally selects models that involve just a subset of all variables, ridge
regression will include all p predictors in the final model. This makes ridge regression completely
infeasible when p > n, as if often the case, for example, with Internet-related data.
The LASSO (Least Absolute Shrinkage and Selection Operator) is an alternative that overcomes this
disadvantage. It achieves that by using a different type of shrinkage penalty:

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |

In statistical lingo, this type of penalty is known as ℓ1-penalty, because it uses ℓ1 norm of coefficient
vector β given by ||β||1 =

∑
|βj |. Ridge regression, on the other hand, uses ℓ2 norm as a penalty,

given by ||β||2 =
∑

β2
j
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Lasso Variable Selection

As with ridge regression, lasso shrinks all coefficient estimates towards zero.
However, unlike ℓ2 penalty in ridge regression, lasso penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
Hence, much like best subset selection, lasso performs variable selection, starting with the full set of
p variables. We say that lasso yields sparse models — that is, models that involve only a subset of
the variables.
As in ridge regression, selecting a good value of λ for lasso is critical; cross-validation is again the
method of choice.
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Credit Card Data Example

Similar to ridge regression, setting λ to suffi-
ciently high value will shrink all coefficients to
zero.
Unlike ridge regression, lasso coefficients will get
shrunk exactly to zero in a single jump, without
smooth continuous decline.
Additionally, while ridge regression shrinks all
coefficients close to zero around the same values
of λ, lasso sets some coefficients to zero much
earlier than others.
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Lasso vs Ridge

Why is it that in lasso regression we get some of the coefficients shrunk exactly to zero, but not in
ridge regression?
One can show that lasso and ridge regression coefficient estimates solve the following problems:

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

subject to
p∑

j=1

|βj | ≤ s

and

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

subject to
p∑

j=1

β2
j ≤ s

These two problems have a useful geometric representation that shows exactly why lasso induces
sparsity among coefficients.
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Lasso vs Ridge

Left: lasso Right: Ridge
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Selecting the Tuning Parameter λ

Both with ridge and with lasso we need to select the value for the tuning parameter λ or equivalently,
the value of the constraint s in a way that will not lead to overfitting or other mistakes. Cross-
validation provides a simple way to tackle this problem.
We choose a grid of λ values and fit a separate model for every value from that grid using K-fold
cross-validation.
We then compute the cross-validation error for each value of λ and select the one for which that
error is smallest.
Finally, the model is re-fit using all of the available observations and the selected value of the tuning
parameter.
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Pros and Cons of Lasso

In terms of overall fit neither ridge regression nor lasso will universally dominate the other.
In general, one might expect lasso to perform better when the response is a function of only a
relatively small number of predictors. However, that is never known a priori with real-life data.
Ridge regression can perform better if p < n and there is no a priori reason for some of the variables
to not be included in the model.
Lasso can perform variable selection and model estimation with p > n, but has a known issue
of ignoring groups of correlated variables (e.g. performance metrics of NBA players) and almost
randomly selecting only one variable out of the group.
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Lasso and Economics

Despite its know flaws, over the past decade lasso has become very popular with both academic
researchers and applied economists.
From the theoretical perspective, multiple extensions and variations of lasso has been suggested, and
today advanced versions of it can deal both with correlated regressors (group lasso, elastic net) and
biased estimates (adaptive lasso, post-lasso).
The main driving force behind is the ability to tackle datasets that previously were completely
unusable due to number of variables p being close or even larger than sample size n.
Additionally, lasso allows economists to utilize sparse structural models, e.g. consumer preferences
across hundreds of product attributes with most of them having zero importance.
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