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Overview

Agenda:
@ Subset selection methods.
o Ridge regression.

@ Lasso regression.

Readings:
@ ISLR Chapter 6, sections 6.1 and 6.2
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Linear Model: Pros and Cons

In this chapter, we are going to extend our understanding of the Linear Model

Y = Bo+ B1X1+ B2 Xo + ... + ﬂpo

@ Despite its simplicity, linear regression model estimated by OLS has two key advantages: inter-
pretability and good predictive performance.

@ However, the linear nature of regression function means that complex non-linear relationships cannot
be easily modeled.

@ One solution is to add more features to the model — interactions, powers, log-transformations and
so on. This allows the model to retain its linear nature, yet approach non-linear models in terms of
flexibility and predictive performance.

@ The question then becomes — how does one select which features (regressors) to include? And why
do we want to select a subset of the features?

ML in Economics | Cappello | Fall'24 Module 4: Feature Selection in Linear Models 3/31



|
Why Consider Alternatives to OLS?

@ Model Interpretability
o Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By
removing these variables we can obtain a model that is more easily interpreted.
@ Prediction Accuracy
e Suppose n is the number of observations and p is the number of regressors
e OLS estimates generally have low bias
e When n>> p, OLS estimates tend to also have low variance, and hence will perform well on test
observations
e When n is not much greater than p then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future observations
o Finally, OLS is generally infeasible when p > n.
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N
Feature Selection Methods

@ Subset selection. ldentify a subset of the p predictors that are believed to be related to the response
Y. Then fit a model using least squares on the reduced set of variables.

o Examples: best subset selection, forward stepwise selection, backward stepwise selection.

o Shrinkage/regularization. Fit a model involving all p predictors, but the estimated coefficients are
shrunken towards zero relative to the least squares estimates. This shrinkage/regularization has the
effect of reducing variance and can also perform variable selection.

o Examples: ridge regression, lasso regression, elastic net regression.

@ Dimension reduction. Project the p predictors into a M-dimensional subspace, where M < p. This is
achieved by computing M different linear combinations, or projections, of the variables. Then these
M projections are used as predictors to fit a linear regression model by least squares.

e Examples: principal component regression, partial least squares.
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N
Best Subset Selection

@ Let Mg denote the null model, which contains no predictors. This model simply predicts the sample
mean for each observation.

@ Fork=1,2,...,p:

Wik)! models that contain all possible combinations of k predictors out of p.
e For each value of k, pick the best out of these models as having the smallest value of the loss function
(lowest RSS or highest R?) on the training dataset and call that model M.

o Fit al (f;) _

@ Select a single best model among Mg, My, ..., M, using either MSE from cross-validation, C,
(AIC), BIC or adjusted R? (more on these later).
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Best Subset Selection
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Stepwise Selection

@ The total number of models to estimate in best subset selection algorithm is equal to 2° and that
number grows very quickly with p. There are 1024 models for p = 10, over a million for p = 20 and
with p = 40 it becomes computationally infeasible even on fastest modern hardware.

@ Because of mainly this reason, stepwise methods, which explore a far more restricted set of models,
are attractive alternatives to best subset selection.
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Forward Stepwise Selection

Forward stepwise selection begins with a model containing no predictors, and then adds predictors
to the model one-at-a-time, until all p predictors are in the model.

@ At each step the variable that gives the greatest additional improvement to the fit is added to the

model.
o Let Mg denote the null model, which contains no predictors.
@ Fork=12,....,p—1
o Consider all p — k models that augment the predictors in M with one additional predictor.
o Pick the best out of these models as having the smallest value of the loss function (lowest RSS or
highest R?) on the training dataset and call that model M. 1.
@ Select a single best model among Mg, My,..., M, using either MSE from cross-validation, C,

(AIC), BIC or adjusted R2.
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Backward Stepwise Selection

Backward stepwise selection begins with a full model containing all p predictors, and then iteratively
removes the least useful predictor one-at-a-time.

Let M, denote the full model, which contains all p predictors.

Fork=p,p—1,...,1:
o Consider all k models that contain all but one of the predictors in My for a total of kK — 1 predictors.
o Pick the best out of these k models (lowest RSS or highest R?) on the training dataset and call that
model M _;.
Select a single best model among Mg, My, ..., M, using either MSE from cross-validation, C,
(AIC), BIC or adjusted R2.
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Backward vs Forward Selection

@ Both backward and forward stepwise selection search only through a small subset of 2P and thus can
be applied in settings where p is too large for best subset selection.

@ However, neither of them is guaranteed to yield the best model containing a subset of p predictors.

# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income rating, income,
student, limit student, 1limit

@ Backward selection requires that the sample size n is larger than the number of variables p (so that
the full model with p predictors can be fit). In contrast, forward stepwise can be used even when
n < p, and so is the only viable subset method when p is very large.
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|
Choosing the Optimal Model

@ The model containing all p predictors will always have the smallest RSS and the largest R?, since
these quantities are related to the training error, which is typically negatively related to number of
features used.

@ We wish to choose a model with low test error, not a model with low training error. Therefore, RSS
and R? are not suitable for selecting the best model among a collection of models with different
numbers of predictors.

@ We can directly estimate the test error, using either a validation set approach or a cross-validation
approach, as discussed in previous lectures.

o Alternatively, we can indirectly estimate test error by making an adjustment to the training error to
account for the bias due to overfitting.
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]
Cp, AIC, BIC, and Adjusted R?

e C,, AIC, BIC, and Adjusted R? are different measures designed to introduce a correction to training
error to help avoid overfitting issues.

e Mallow’s Cp:
C, = %(RSS +2d5?)

where d is the total number of parameters used and &2 is an estimate of the variance of the error
term e.
@ The AIC criterion is defined for a large class of models fit by maximum likelihood:

AlIC = —2log L 4 2d

where L is the maximized value of the likelihood function for the estimated model.

@ In case of linear model with normal errors C, and AIC are equivalent.
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]
Cp, AIC, BIC, and Adjusted R?

e BIC )
BIC = —(RSS + log(n)da?)

Like with C, and AIC, the lower value of BIC, the better.

BIC replaces the term 2d5? used by C, with a term log(n)da?2. Since log(n) > 2 for any n > 7, BIC
places heavier penalty on models with many variables, and hence usually results in the selection of
smaller models than C,.
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]
Cp, AIC, BIC, and Adjusted R?

o For a least squares model with d variables the adjusted R? statistic is

R2. 1 RSS/(n—d-1)
*d = TSS/(n—1)

@ Unlike C,, AIC and BIC, a larger value of R2 i indicates a model with a smaller test error.

e Maximizing R?

-j IS equivalent to minimizing %. While RSS always decreases as the number

of variables in the model increases, Rfdj may increase or decrease due to the presence of d in the
denominator.

@ In other words, unlike the standard R?, the adjusted R? statistic pays a price for the inclusion of
unnecessary variables in the model.
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Credit Data Set Example
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|
Shrinkage Methods

@ The subset selection methods fit a linear model that contains only a subset of the predictors. This is
equivalent to setting the coefficients on excluded predictors to zero prior to running the estimation
algorithm.

@ As an alternative, one can fit a model containing all p predictors using a technique that regularizes
the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero as part
of the estimation algorithm.

@ It may not be immediately obvious why such a constraint should improve the fit or if the algorithm
will work in the first place, but it turns out that shrinking the coefficient estimates can significantly
reduce their variance at a cost of a minor increase in bias.

@ Two most common shrinkage/regularization methods are ridge regression and lasso regression.
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|
Ridge Regression

@ Standard least squares regression fits the model by picking values of 5y, 01, ..., 8, that minimize

2

n P
RSS:Z ,Vi—ﬂo—Zﬁinj
i=1 =1

o Ridge regression instead picks coefficient values ER that minimize
n P
Slyi—Bo—_ Bixy +>\252 RSS+>\ZB2

i=1 j=1 j=1

@ Parameter X is the tuning parameter, to be determined separately.
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|
Ridge Regression

@ The nature of ridge regression is similar to that of OLS: seek coefficient values that make the model
fit the data well (by making RSS small).

@ However, now we can no longer set values of coefficients to arbitrary values, even if that significantly
decreases RSS. This is because the second term A Y°7_, 2, called a shrinkage penalty, will increase
our loss function if values of 5o, 51, ..., 3, are far away from zero.

@ Because loss function now has two terms to balance out, the extra second term has the effect of
shrinking the estimates of (3; towards zero.

@ The tuning parameter \ serves to control the relative impact of these two terms on the regression
coefficient estimates. Selecting a good value for A is critical, and is done via cross-validation.
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Credit Card Data Example

100 200 300 400

0

Standardized Coefficients
~100

-300

VA
ML in Economics | Cappello | Fall'24 Module 4: Feature Selection in Linear Models

Income
Limit
Rating
Student

0.01

T
1

T
100

T
10000

@ As can be seen from the picture, it is always
possible to set A to a value that will shrink all
coefficients arbitrary close to zero.

@ As such, we need to perform cross-validation
testing to see which value of A achieves minimal
total value of ridge loss function.

@ The process is usually done via a grid search
algorithm (more on that later)
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Feature Scaling and Standardization

o Standard least squares coefficient estimates are scale invariant: multiplying X; by a constant ¢ simply
leads to a scaling of the least squares coefficient estimate /; by a factor of 1/c. In other words,
regardless of how the j-th predictor is scaled, 3;X; will always remain the same.

@ In contrast, the ridge regression coefficient estimates can change substantially when multiplying a
given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the
ridge regression loss function.

@ Unlike the first term, which contains B\JXJ parts, the shrinkage penalty contains values of only 3-2,
thus making is scale-dependent.

@ Therefore, it is best to apply ridge regression after standardizing the predictors:

Xjj

Xij = -
\/ Z: 1 (G —X;)
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Why Does Ridge Regression Improve Over LS: Bias-variance trade-off

@ Suppose our test data Te consists of a single data point (xg, o). Then
” 2 N 2
MSE =E {(yo - f(xo)) ] —E [(f(xo) - f(xo)) ] + Var(eo)
=5 | (o)~ £ [f0)]) | + 2 | (10) ~ &[] )| + varten)

Var(f(Xg)) ]E[Biasz(f(xo))]

o Variance refers to the amount by which  would change if we estimated it using a different training
data set

@ Bias refers to the error that is introduced by approximating a real-life problem by a much simpler
model

@ Typically as the flexibility of f increases, its variance increases, and its bias decreases. So choosing
the flexibility based on MSE amounts to a bias-variance trade-off.

ML in Economics | Cappello | Fall'24 Module 4: Feature Selection in Linear Models 22/31



|
Why Does Ridge Regression Improve Over LS?

- o Squared bias, variance and MSE.

@ Because OLS is free to choose any coefficient
— values, it tends to pick the ones that provide
g ~_._ best fit, meaning less bias and more variance.

50
|

@ Ridge regression, on the other hand, is penal-
ized for choosing coefficients with high second
moments, thus leading to less variance, slightly
more bias, but lower MSE overall.
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Lasso regression

@ Unlike subset selection, which generally selects models that involve just a subset of all variables, ridge
regression will include all p predictors in the final model. This makes ridge regression completely
infeasible when p > n, as if often the case, for example, with Internet-related data.

@ The LASSO (Least Absolute Shrinkage and Selection Operator) is an alternative that overcomes this
disadvantage. It achieves that by using a different type of shrinkage penalty:

2
n

P P P
Slyi=Bo=D Bixi | +AD_ 1B =RSS+ 1> |8

i=1 j=1 j=1 j=1

@ In statistical lingo, this type of penalty is known as /1-penalty, because it uses £; norm of coefficient
vector [ given by ||3||1 = Y_ |5;j|. Ridge regression, on the other hand, uses ¢, norm as a penalty,

given by [|8]l2 = 32 57
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Lasso Variable Selection

o As with ridge regression, lasso shrinks all coefficient estimates towards zero.

@ However, unlike /> penalty in ridge regression, lasso penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when the tuning parameter X is sufficiently large.

@ Hence, much like best subset selection, lasso performs variable selection, starting with the full set of

p variables. We say that lasso yields sparse models — that is, models that involve only a subset of
the variables.

@ As in ridge regression, selecting a good value of \ for lasso is critical; cross-validation is again the
method of choice.
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Credit Card Data Example
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Lasso vs Ridge

@ Why is it that in lasso regression we get some of the coefficients shrunk exactly to zero, but not in
ridge regression?

@ One can show that lasso and ridge regression coefficient estimates solve the following problems:

2
n p p
mgn Z Yi — Bo — Zﬂjx,-j subject to Z 1Bi] <s
i=1 j=1 =
and
2
n p o
mﬂin Z i = Bo— Zﬁjxij subject to Zﬁj? <s
i=1 j=1 =

@ These two problems have a useful geometric representation that shows exactly why lasso induces
sparsity among coefficients.
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Lasso vs Ridge
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Selecting the Tuning Parameter A

@ Both with ridge and with lasso we need to select the value for the tuning parameter A or equivalently,
the value of the constraint s in a way that will not lead to overfitting or other mistakes. Cross-
validation provides a simple way to tackle this problem.

@ We choose a grid of A values and fit a separate model for every value from that grid using K-fold
cross-validation.

@ We then compute the cross-validation error for each value of A\ and select the one for which that
error is smallest.

o Finally, the model is re-fit using all of the available observations and the selected value of the tuning
parameter.
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Pros and Cons of Lasso

@ In terms of overall fit neither ridge regression nor lasso will universally dominate the other.

@ In general, one might expect lasso to perform better when the response is a function of only a
relatively small number of predictors. However, that is never known a priori with real-life data.

o Ridge regression can perform better if p < n and there is no a priori reason for some of the variables
to not be included in the model.

o Lasso can perform variable selection and model estimation with p > n, but has a known issue
of ignoring groups of correlated variables (e.g. performance metrics of NBA players) and almost
randomly selecting only one variable out of the group.
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Lasso and Economics

@ Despite its know flaws, over the past decade lasso has become very popular with both academic
researchers and applied economists.

@ From the theoretical perspective, multiple extensions and variations of lasso has been suggested, and
today advanced versions of it can deal both with correlated regressors (group lasso, elastic net) and
biased estimates (adaptive lasso, post-lasso).

@ The main driving force behind is the ability to tackle datasets that previously were completely
unusable due to number of variables p being close or even larger than sample size n.

o Additionally, lasso allows economists to utilize sparse structural models, e.g. consumer preferences
across hundreds of product attributes with most of them having zero importance.
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